From quantum code-making to quantum code-breaking
نویسنده
چکیده
1 What is wrong with classical cryptography ? Human desire to communicate secretly is at least as old as writing itself and goes back to the beginnings of our civilisation. Methods of secret communication were developed by many ancient societies, including those of Mesopotamia, Egypt, India, and China, but details regarding the origins of cryptology remain unknown (Kahn 1967). We know that it was the Spartans, the most warlike of the Greeks, who pioneered military cryptography in Europe. Around 400 BC they employed a device known as a the scytale. The device, used for communication between military commanders, consisted of a tapered baton around which was wrapped a spiral strip of parchment or leather containing the message. Words were then written lengthwise along the baton, one letter on each revolution of the strip. When unwrapped, the letters of the message appeared scrambled and the parchment was sent on its way. The receiver wrapped the parchment around another baton of the same shape and the original message reappeared. Julius Caesar allegedly used, in his correspondence, a simple letter substitution method. Each letter of Caesar’s message was replaced by the letter that followed it alphabetically by three places. The letter A was replaced by D, the letter B by E, and so on. For example, the English word COLD after the Caesar substitution appears as FROG. This method is still called the Caesar cipher, regardless the size of the shift used for the substitution. These two simple examples already contain the two basic methods of encryption which are still employed by cryptographers today namely transposition and substitution. In transposition (e.g. scytale) the letters of the plaintext, the technical term for the message to be transmitted, are rearranged by a special permutation. In substitution (e.g. Caesar’s cipher) the letters of the plaintext are replaced by other letters, numbers or arbitrary symbols. In general the two
منابع مشابه
GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE
The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generaliz...
متن کاملConstacyclic Codes over Group Ring (Zq[v])/G
Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...
متن کاملFrom Quantum Cheating to Quantum Security *
For thousands of years, code-makers and code-breakers have been competing for supremacy. Their arsenals may soon include a powerful new weapon: quantum mechanics. Cryptography — the art of code-making — has a long history of military and diplomatic applications, dating back to the Babylonians. In World World Two, the Allies' feat of breaking the legendary German code, Enigma, contributed greatl...
متن کاملConstruction X for quantum error-correcting codes
Construction X is known from the theory of classical error control codes. We present a variant of this construction that produces stabilizer quantum error control codes from arbitrary linear codes. Our construction does not require the classical linear code that is used as an ingredient to satisfy the dual containment condition. We prove lower bounds on the minimum distance of quantum codes obt...
متن کاملTheoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths
The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage. The considered systems were composed from one-layer graphene sheets differing w...
متن کاملTheoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths
The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage. The considered systems were composed from one-layer graphene sheets differing w...
متن کامل